Vallabh Vidyanagar-388120 B.Sc. (Semester - 5) Subject: Physics Course: US05DPHY26 Renewable Energy Sources (Two Credit Course -2 Hours per week) (Effective from June-2020)

UNIT- II Geothermal Energy and Wind Energy-Fundamentals and Applications

Geothermal Energy: Introduction, Application, Geothermal Energy Resources, Origin of Geothermal Resources, Hydro Geothermal Resources.

Wind Energy- Fundamentals and applications: Introduction of Wind Energy, Wind power density, Power in a wind stream, Wind turbine Efficiency, Power of a wind Turbine for given incoming Wind Velocity, Types of wind turbine –Generator Units, Mono- Blade Horizontal axis Wind turbine (HAWT), Twin- Blade Horizontal axis Wind turbine (HAWT) and Three-Blade Horizontal axis Wind turbine (HAWT).

Introduction:

The thermal energy contained in the interior of the earth is called the geothermal energy. The geothermal energy is enormous and will last for several millions of years and is therefore called renewable.

The important aspects about the geothermal energy have been summarized in Table 6.1.

Characteristics	Remarks
Form of Energy	Thermal energy in the form of hot water, steam,
	Geothermal brine, mixture of these fluids.
Availability	Generally available deep inside the earth at a depth
	more than about 80 km. Hence, generally not
	possible to extract.
	In a few locations in the world, deposits are at depths
	of 300 m to 3000 m. Such locations are called the
	Geothermal Fields.
Method of Extraction	Deep production wells are drilled in the geothermal fields.
	The hot steam/water/brine is extracted from the
	geothermal deposits by the production wells, by
	pumping or
	By natural pressure.
Geothermal fluids	Hot water,
	Hot brine
	Wet steam,
	Mixture of above.

Table- 61	Important As	nects about	Geotherma	Energy
I abic- 0.1	mipul tant ho	pecus about	ucoulcima	LIICIEV

Countries which have known Geothermal Resources	Chile Philippines	New Zea Hungary Turkey	landEI Sa Indo Italy	llvador nesia
Resources	U.S.A.	Japan	USSI	R
Application of	Mexico Hot water for	baths, therapy		
Geothermal Energy	District heatin	g, space heating	_	
	Hot water irrig	gation in cold cou ng	ntries	
	Greenhouse he	eating		
	Process heat			
	Minerals in ge	othermal fluid		
Engineering Criteria for	Electrical pow	Tomporature	Donth	Dischargo
applications of geothermal	Application	(more than)	(less than)	(more
hot water.		°C	km	than)
				m ³ /day
	Electrical power			
	steam water	100	3	10000
	cycle			10000
	Electrical power			
	generation by	70	2.5	25000
	Dinary cycle	=	05	1000
Pango of Coothormal	District heating	/0	2.5	1000
Power plant installed capacity	5 MW to 400 M	vi vv		
Average geothermal gradient	30°C per 1000	m depth		
Geothermal energy	0.06 W/mn ²			
released through	About 1/1000	th of solar energy	on earth's sur	face
Total geothermal	4x 10 ¹² EJ	(EJ = ex)	xa-joule = 10^{18}	³ joule)
reserves in the earth Renewable energy	4000 EJ	(EJ = ex)	xa-joule = 10^{18}	joule)
deposits available for Use in upper 3 km Zone				
Rate at which the renewable can be tapped for production of electricity Types of Geothermal	2 to 10 EJ/yr	(EJ = e	xa-joule = 10 ¹	⁸ joule)

4

energy deposits	
Hydrothermal	 Hot water and steam, hot brine
Petro thermal	 Hot dry rock (HDR)

Evidence of the enormous geothermal energy stored deep inside the earth is apparent only n a few countries and a few locations in the world in the form of

-- Hot water springs:

-- The geysers (gusher): Hot water and steam released periodically from small vents in the ground in volcanic region or geothermal fields.

-- Fumaroles: Hot steam and gases released from small vents in the ground volcanic regions or geothermal fields.

-- Volcanic eruptions: Eruption of geothermal energy eruption in large quantities releasing hot lava, rocks, ash, mud, forming a typical conical hill or mountain.

Applications:

Until 1904, the use of naturally available geothermal energy had been limited for the use of warm water baths, therapeutic treatments etc. After 1904 the geothermal energy is being used for many electrical power generation and non-electrical applications (refer table 6.2).

The non-electrical applications include

- Space	heating	-
---------	---------	---

-- Air-conditioning

-- Greenhouse heating -- Process heat

-- Medical therapy -- Mineral extraction

Geothermal water is used for heating green houses, heating houses, agricultural water, aquaculture water, medical therapy, mineral extraction (calcium chloride, boron etc.), desalination plants etc.

Countries	Utiliza	ation
	Electrical Power Production	Non-electrical Applications
Chile		
El Salvador		
Hungary		
Iceland		
Italy		
Japan		
Mexico		
New Zealand		
Philippines		
Turkey		
USA		
USSR		
France		

Table 6.2 Applications of Geothermal Energy for Various Purposes

Important criteria for engineering applications geothermal water are:

-- Temperature of geothermal fluid, °C

-- Discharge rate, m³/day

3/8

-- Useful life of production well, years.

-- Depth of Aquifer (m)

-- Mineral Contents gram/m³

e of ver d	rage pera e of ther al d °C	harg of lucti vell day	th of ill ile 1	eral tent kg
Typ Pov	Aven temj turc geot m flui	Disc e prod on v m ³ /	Dept dr ho n	Min cont g/
Electrical power plant	185 to 255	10,000	650 to 3000	3 to 20
with steam-water				
cycle				
Electrical power				
generation with				
binary fluid cycle	70 to 150	25000	500 to 2500	6 to 40
(Ammonia/water or				
Hydrocarbon//water,				
Freon/water)				

Typical range of parameters of present geothermal power plants is given in Table 6-3. Table 6.3 Engineering Criteria for Resources for Geothermal Power Plants

Geothermal Energy Resources: The temperature of earth increases with the depth rather non-uniformly with average increases of 30°C per 1000 m (Geothermal Gradient). It is therefore; generally necessary to drill 10 km deep production wells to obtain geothermal fluids at significant temperatures and deep wells generally exclude the exploitation of this geothermal energy. Hence though immense geothermal energy may be available at great depths, they are not considered as potential geothermal resources. (Refer figure 6.1). The layers of aquiferous permeable rocks (4), impermeable rocks (5) and upper surface (6) of the earth are non-uniform. There are a few favourable geothermal deposits at relatively less depths (300 m to 3000 m). The geothermal energy deposits in such locations may contain large quantum of energy or low quantum of energy. However, such deposits at lesser depths have geothermal fluids at relatively low temperatures and the energy cannot

Figure: 6.1 Cross section of the earth with geothermal energy deposits, various types of modes, volcanoes, furmoroles, hot springs etc.

be transported economically over long distances and must be used at the site locally. Such sites are called the geothermal fields. Some twenty geothermal sites are already known and a few others are yet to be discovered. There are two types of geothermal energy deposits. These are called

-Hydro-geothermal energy resources.

(Hydro = Water or fluid)

-Petro-geothermal energy deposits.

(Petro = Rock)

Hydro-Geothermal Energy Resources: These are the deposits of hot water and steam at relatively lesser depths (3000 m). Hot water, hot brine and steam can be extracted from such deposits by means of the production wells.

Petro-Geothermal Energy Resources [Hot Dry Rock (HDR)]: The hot dry rocks at temperature around 200°C and depth about 2000 m form important deposits of geothermal energy. Two types of wells are drilled in HDR sites. These are called production wells and injection wells.

Water is pumped in through the injection well into the Hot Dry Rock fracture.

The injected water collects heat from the hot dry rock and forms a deposit of hot water and steam in the fracture within the rock.

Production well extracts the hot water and steam from the geothermal deposits in the hot dry rock.

Petro Geothermal Energy Deposits may deliver mixture of hot water and steam of temperatures up to about 200°C for several decades.

Origin of Geothermal Resources: The planet earth originated from the sun several millions years ago and is cooling slowly. The earth was originally a mass of hot liquids, gases and steam. As cooled by loosing heat to the atmosphere, the outer solid crust, oceans, lakes were formed. The average thickness of cooler outer crust is about 30 km. Hot dry rocks, hot gases and liquids are deposited in the region below average depth of 2800 km. The temperature range of the magma (molten mass) is of 1250°C to 1500°C. The centre of the earth is at temperature 4500°C. The inner core of the earth has several minerals including iron, nickel, silicon, magnesium.

The earth is losing heat slowly through the outer crust with average energy loss of about 0.025 W/m, which too small compared with average solar radiation on the earth's surface (25 W/m^2) .

The average increase in temperature with the depth is about 25 to to 30°C per kilometer. This is called average geothermal gradient.

The normal thermal radiation from earth is only about 25 kW per square kilometer and about 3×10^{10} kW for the entire earth.

The earth's outer crust and internal rock formation is non-uniform. The liquid magma in the upper mantle approaches earth's surface at some points resulting in higher thermal gradients and higher heat flows through surface of the earth.

Fig. 6.1 shows a cross section of the globe indicating following zones.

1. Centre,

- 2. Magma,
- 3. Conducting (Permeable) Rock
- 4, Aquiferous rock (Porous, permeable rock through which water can percolate),
- 5. Solid impermeable rock.
- 6. Outer soft soil and water.

-- The thicknesses of the zones vary widely due to non-uniform formation of layers. Some layers overlap on adjacent layers. Some layers have defects.

-- The layers of outer and inner layers experience slow or violent geological movements.

Strong violent seismic movements are 'earthquakes'. Violent out-bursts ejecting magma, hot ash; hot rocks, lava etc. are called volcanoes. Earthquakes and volcanoes occur in some spots occasionally. There are several potential geothermal fields in the neighborhood of dead volcanoes.

Geothermal fields are regions in which energy deposits are available at a depth less than 1500 to 3000 m.

Hydro Geothermal Resources: These are reserves of hot water, wet steam and dry steam. Fig.6.3 shows a cross section of earth below a geothermal field. The geological layers of earth's crust, semi permeable rocks and permeable rocks are non-uniform and have several fractures and defects.

A few locations on the earth's surface have potential hydro thermal resources in the form of hot water, wet steam and mixture hot water and steam of medium temperatures (below 200°C).

Hot water and steam deposits are located in the fractures within the hot aquiferous permeable rocks. The water from rain, lakes, ocean etc. over several tens or hundreds of kilometer surface area percolates into the earth through upper crust and the defects (fissures) in the permeable rocks to the depths of 2 to 10 km. The water gets heated and rises through defects in the solid impermeable rocks and gets

Rain water, lake water, sea water percolates through top soil and fractures.

The water gets heated in contact with geothermal heat, rises and gets collected in the fractures within the permeable rocks. The upper impermeable rock provides insulating covering to the hot water deposits.

The hot water deposits without much steam content called liquid dominated hydro geothermal deposits. The temperature of water in such deposits is usually in the range of 100°C to 310°C.

When wells are drilled in the ground over such deposits, there are three possibilities:

-- The hot water and steam rises naturally through production well (Geo-pressure system). Figure: 6.2 Hydrothermal and Geothermal Deposits (Reserved)

-- The hot water should be pumped

up through the production well.

-- Geothermal brine rises through the production well (Calcium chloride, boron, clay, etc.) is called geothermal brine.

QUESTIONS

Par 1.	t-1: l The	Multiple Choice q ue thermal energy	u estic conta	ons: ined in the interio	or of t	he earth is called	the _	
	(a)	Geothermal	(b)	Thermal	(c)	Geothermal	(d)	Volcanic
		energy		energy		power		energy
2.	The	Geothermal ener	gy is	generally availabl	e dee	ep inside the earth	n at a	depth more
	thar	n aboutkm.						
	(a)	20	(b)	40	(c)	60	(d)	80
3.	Ave	rage value of geo	thern	nal gradient is				
	(a)	30°C	(b)	30°C	(c)	30°C	(d)	30°C
		per 500 m		per 1000 m		per 2000 m		per 10000 m
		depth		depth		depth		depth
4.	Hot	steam and gases	relea	sed from small ve	nts in	the ground volca	anic re	egions or
	geot	thermal fields is c	alled	- -				
	(a)	hot water	(b)	gusher	(c)	fumaroles	(d)	volcanic
		springs						eruptions
5.	The	earth is losing he	eat slo	owly through the o	outer	crust with averag	ge ene	ergy loss of
	abo	ut 0.025 W/m.						
	(a)	0.025 W/m	(b)	0.022 W/m	(c)	0.020 W/m	(d)	0.035 W/m
6.	Hyd	ro Geothermal R	esour	ces are reserves o	of	·		
	(a)	magma	(b)	hot water	(c)	rocks	(d)	minerals
Par	Part-2: Short answer questions:							
1	. De	fine: (1) The geys	sers, ((2) Fumaroles an	d (3)	Volcanic eruption	ns	
	. En	list non-electrica	l appl	ications of geothe	ermal	energy.		
111	. Ex	plain in short-Th	e Peti	-o-Geothermal En	ergy I	Resources.		
IV	. Ex	plain in short-hyd	aro-G	eothermal Energy	7 Keso	ources.	.1	
v	Give the brief details of engineering Criteria for Resources for Geothermal Power V.					mai Power		
	PIa	ints.						

Part-3: Long answer questions:

- 1. Write a note on the important Aspects about Geothermal Energy.
- 2. Write a note on the applications of Geothermal Energy.
- 3. Write a note on the Geothermal Energy Resources.
- 4. Write a note on origin of Geothermal Resources.
- 5. Write a note on the hydro Geothermal Resources.

?=======;